Mishtu Dey

Mishtu Dey
Assistant Professor
Phone: 
319-384-1319
Office: 
W285 CB
Biosketch: 
  • Ph.D., Indian Institute of Technology Bombay (2005)
  • Postdoctoral Fellow, University of Nebraska-Lincoln and University of Michigan (2005-2008)
  • Howard Hughes Medical Institute Postdoctoral Research Associate, Massachusetts Institute of Technology (2008-2011)
Keywords: 

Metallobiochemistry; biophysical and X-ray crystallographic studies; catalytic mechanisms of redox-active enzymes; Ni and methane biocatalysis; microbial metabolism of dimethylsulfoniopropionate; post-translational modifications; collagen biosynthesis; metals in biology.

Research Interests: 

Research in our laboratory resides at the interface of chemistry and biology to understand the molecular mechanisms of metalloenzymes important for bioenergy conversion, human health and disease, or environmentally valuable. The focus is on applying a combination of enzymology, microbiology, molecular biology, and X-ray crystallographic technique to investigate the catalytic mechanisms of redox-active metalloenzymes. Our research is highly interdisciplinary, drawing from synthetic chemistry, protein biochemistry, biophysics, and microbial bioprocessing.

Methanogenesis. Biological methane is produced by a process called methanogenesis through the action of a group of microbes called methanogens. The methanogens use simple one- and two-carbon compounds as substrates to form methane utilizing one of Nature's most fascinating nickel enzymes, methyl coenzyme M reductase. Approximately one billion tons of methane is generated every year by methanogenesis. We are interested in understanding the structure and mechanism of this globally important metalloenzyme.

Mechanism of 2-oxoglutarate dioxygenases. Proline hydroxylation is an essential post-translational modification occurring in all organisms. Hydroxylation of proline is catalyzed by mononuclear non-heme iron 2-oxoglutarate-dependent prolyl-hydroxylases. These enzymes regulate diverse biological processes and are involved in a variety of diseases. We are investigating the regulatory properties of some of these prolyl-hydroxylases.

Metallocofactors and Microbial Sulfur CycleTThe organic sulfur compound dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and is a major precursor for the climate-active gas dimethylsulfide (DMS). DMS plays a major role in the biogeochemical cycling of sulfur. We employ mechanistic and structural enzymology tools to address fundamental questions related to DMSP and DMS cycling from marine milieus. 

 

Recent Publications: 
  • Schnicker, N.J., Dey, M. (2016) Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns. J.Biol.Chem. DOI: 10.1074/jbc.M116.725432.
  • Schnicker, N.J. & Dey, M. (2016) Structural analysis of cofactor binding for a prolyl 4-hydroxylase from the pathogenic bacterium Bacillus anthracis. Acta Cryst. D72, DOI:10.1107/S2059798316004198.
  • Brummett, A. E., Schnicker, N. J., Crider, A., Todd, J. L., Dey, M. (2015) Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW - a Mononuclear Iron-dependent DMSP Lyase. PLoS ONE 10(5): e0127288. DOI: 10.1371/journal.pone.0127288.
  • Bewley, K., Dey, M., Bjork, R. E., Mitra, S., Chobot, S., Drennan, C. L., Elliott, S. J. (2015) Rheostat re-wired: alternate hypotheses for the control of thioredoxin reduction potentials. PLOS ONE, 10(4):e0122466. DOI: 10.1371/journal.pone.0122466.
  • Chang, W., Dey, M., Liu, P., Mansoorabadi, S. O, Moon, S. J.,  Zhao, Z., Drennan, C. L., Liu, H-W (2013) Mechanistic studies of an unprecedented enzyme-catalyzed 1,2-phosphono migration reaction. Nature, 2013, 496, 114-118.
  • Yun, D.; Dey, M.; Higgins, L.J.; Yan, F.; Liu, H.-W.; Drennan, C.L.  Structural Insights into the mechanism of Regioselectivity of Hydroxypropylphosphonic Acid Epoxidase.  J. Am. Chem. Soc., 2011, 133, 11262-9.
  • Cedervall, P.E.; Dey, M.; Li, X.; Sarangi, R.; Hedman, B.; Ragsdale, S.W.; Wilmot, C.M.  Structural analysis of a Ni-methyl species in methyl-coenzyme M reductase from Methanothemobacter marburgensis. J. Am. Chem. Soc2011 133, 5626-8. (Faculty of 1000 pick).
  • Dey, M.; Li, X.; Kunz, R.C.; Ragsdale, S.W.  Organometallic and Radical Intermediates in the Catalytic Mechanism of Methyl-Coenzyme M Reductase using the natural substrate methyl-coenzyme M and a Coenzyme B substrate analog.  Biochemistry 2010, 28, 49, 10902-11.
  • Dey, M.; Li, X.; Zhou, Y.; Ragsdale, S.W.  Evidence for Organometallic Intermediates in Bacterial Methane Formation Involving the Nickel Coenzyme F430Met Ions Life Sci. 2010 7, 71-110.
  • Cedervall, P.E.;# Dey, M.;# Pearson, A.R.; Ragsdale,S.W.; Wilmot, C.M.  Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues.  Biochemistry 2010, 49, 7683-93 (# indicates equal contribution).
  • Dey, M.; Kunz, R.C.; Lyons, D.M.; Ragsdale, S.W.  Characterization of alkyl-nickel adducts generated by reaction of methyl-coenzyme m reductase with brominated acids.  Biochemistry 2007, 46, 11969-78.
  • Dey, M.; Telser, J.; Kunz, R.C.; Lees, N.S.; Ragsdale, S.W.; Hoffman, B.M.  Biochemical and spectroscopic studies of the electronic structure and reactivity of a methyl-Ni species formed on methyl-coenzyme M reductase.  J. Am. Chem. Soc.  2007, 129, 11030-2. (Faculty of 1000 Pick).
  • Dey, M.; Kunz, R.C.; Van Heuvelen, K.M.; Craft, J.L.; Horng, Y.-C.; Tang, Q.; Bocian, D.F.; George, S.J.; Brunold, T.C.; Ragsdale, S.W.  Spectroscopic and Computational Studies of Reduction of the Metal versus the Tetrapyrrole Ring of Coenzyme F430 from Methyl-Coenzyme M Reductase.  Biochemistry, 2006, 45, 11915-33.
  • Dey, M.; Rao, C.P.; Guionneau, P.  Structural characterization and reactivity of Cu(II) complex of p-tert-butyl-calix[4]arene bearing two imine pendants at lower rim. Inorg. Chem. Commun. 2005, 8, 998-1001.